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APPENDIX D: THEORETICAL ANALYSIS OF UWB SIGNALS USING
BINARY PULSE-MODULATION AND FIXED TIME-BASE DITHER

The theoretically derived spectra for fixed time-base dithered and binary pulse-modulated
UWB signals were used to validate some of the test procedures described in this report. The
calculated power spectral densities and examples showing how the analytical results compare
to measurements are given below. The analytical results presented in this section are taken
from [1].

Fixed time-base dithered UWB systems utilize short duration pulses transmitted at some
nominal pulse period T. In this scheme, pulses are dithered about integer multiples of T. In
the following discussion, it is assumed that the dither times are random variables 2n that are
independent and identically distributed over a fraction of the nominal pulse period with
probability density q(2n). UWB signals may also include information bits by using binary
pulse modulation in addition to the pulse dithering.

The power spectral density for a binary pulse-modulated fixed time-base dithered UWB
signal is obtained by taking the Fourier transform of the autocorrelation function. Due to the
periodic nature of the underlying pulsed signal, the process is cyclostationary with period T.
Time averaging the autocorrelation function over a period yields the average power spectrum
which depends only on the relative time delay. The time averaged power spectral density for
a fixed time-base dithered UWB signal with binary pulse modulation is

  

, D.1

where Pk is the Fourier transform of the signal pulse for the information bit having the value
k, Q is the Fourier transform of probability density function that describes the dithering, and 
gk is the probability that an information bit has the value k (e.g., go is the probability that an
information bit is �0� and g1 is the probability that the bit is a �1� ). Note that L is discrete
(i.e., spectral lines) and C is continuous. 
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D.1  Fixed Time-base Dither and Pulse Position Modulation

If the bit values are equiprobable (i.e., gk = ½) and the pulse representing a 1 is a time
delayed version of the pulse representing a 0 (i.e., p1(t+>) = p0(t) = p(t)), the power spectral
density  becomes

. D.2

Note that the discrete and continuous components depend on both the pulse spectrum and
Q(f). When Q(f) 6 1 (negligible dithering) and the information bits do not change, the
continuous spectrum disappears leaving only a line spectrum as would be expected for a
simple periodic pulsed signal.

The results of an example calculation using Equation D.2 when q is uniformly and
continuously  distributed between 0 and T/2 is given below. For this example, the signal
consists of a short-duration pulse, shown in Figure D.1.1, transmitted at a 20 MHz rate. In
this and following examples, it is assumed that > is small in comparison to the dithering, so
that the effects of information bit modulation are negligible over the frequency range of
interest. 

The power spectral density over a frequency range of 1-5000 MHz is shown in Figure D.1.2.
The magnitude of the spectrum is normalized to the peak of the continuous distribution (at
about 250 MHz). The Fourier transform of the density function for this example is Q(f) =
sinc(BfT/2). This function has nulls at frequencies equal to 2k/T (k = ±1, ±2, ±3, ...); hence
the interval between discrete spectral lines is 40 MHz, as shown in the figures.  For
frequencies above about 40 MHz, the continuous spectrum is approximately the same as the
pulse spectrum (i.e., P(f)).
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Figure D.1.1.  Time-domain pulse shape.
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Figure D.1.2. Power spectral density for a fixed time-base dithered 10-MHz UWB  signal. The
pulse positions are continuously and uniformly distributed over 50% of the pulse
repetition period.
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The mean power in the bandwidth of a narrowband victim RF receiver as a function of
frequency can readily be calculated from these results. For narrowband receivers where gains
due to the UWB transmitter filters/antenna, propagation channel, and receiver are
approximately constant over the receiver bandwidth, the received interference power can be
calculated by applying the appropriate gain factors to the power in the receiver bandwidth at
the center frequency of the receiver.

In the previous example, q is continuous and uniformly distributed over a fraction of the
nominal period T. When the distribution is discrete so that the dithered pulse can only occur
at particular times (e.g., T - nJ, where n = 0, 1, 2, 3, AAAA, N - 1) with equal probability, the
density function can be written as 

 D.3

with spectrum

D.4

which is a periodic function with period 1/J. For example, when 1/T = 20 MHz, and the
pulse is discretely dithered over on half of the pulse-repetition interval with J = 1 ns, the
spectrum is repeated at 1-GHz intervals as shown in Figure D.1.3. In this example, the
receiver bandwidth is 1 MHz and the continuous spectrum is normalized to a maximum of 0
dB.

Note that for any integer m

hence, the continuous spectrum decreases to a minimum at integer multiples of 1 GHz. For
these frequencies, the discrete spectrum tends to a local maximum and spectral lines are
significant. Contrast this with the case where q is continuous (i.e., Q(f) = sinc(BfT/2))
described previously. With continuous dithering, spectral lines at multiples of 1 GHz are not
present, since they occur at nulls of sinc(BfT/2).
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Figure D.1.3. Power spectral density for 20-MHz PRF 50% uniform discrete dithering with J = 1 ns.

A comparison of measured and predicted spectra for a discretely dithered UWB signal is
shown in Figure D.1.4. The UWB signal is pulsed at a 20 MHz rate with uniform 50%
discrete dithering with J = 1 ns. The measurement bandwidth is 1 MHz. As predicted, only
three lines, the strongest at 1 GHz and two others at 1 GHz ± 20 MHz are visible in the
measured signal. This figure shows good agreement between measurement and theory.
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Figure D.1.4. Comparison of measured and predicted spectra for 20-MHz PRF 50% uniform
discrete dithering with J = 1 ns. 
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D.2  Power Spectrum for On-off Keying Without Dithering

For binary pulse modulation using on-off keying without dithering, we set P0 = P(f), P1 = 0,
Q(f) = 1 and g0 = g1 = ½ in Equation D.1 and obtain

.

When the signal is passed through a narrowband receiver with center frequency fc and the
bandwidth B, the received power is

,
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Figure D.2.1. Measured spectrum for on-off keying at 1-MHz PRF, B = 100 kHz.

where N is the nominal number of lines in the filter passband.  The ratio of the power in
bandwidth B due to discrete and continuous components of the signal is simply N(TB)-1. 

Figure D.2.1 shows the spectrum of a signal generated by test equipment using on-off keying
with equiprobable random bits and a pulse repetition frequency of 1 MHz. The signal was
passed through a 20 MHz bandpass filter and a spectrum analyzer using a resolution
bandwidth of B = 100 kHz. In this case N = 1, and hence, (TB)-1 = 10 which is in
agreement with Figure D.2.1 where the discrete spectrum is roughly 10 dB above the level
of the continuous spectrum.
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